Bài tập TOÁN 11 (CT mới) – Chuyên đề CÔNG THỨC LƯỢNG GIÁC.

Chia sẻ nếu thấy hay:

Các bài tập sau đây phù hợp với cả ba bộ sách của chương trình Toán lớp 11 mới: CÁNH DIỀU, CHÂN TRỜI SÁNG TẠO, KẾT NỐI TRI THỨC VỚI CUỘC SỐNG.

Mức độ DỄ:

BT 1:

a) Tính các giá trị lượng giác của góc $75^o.$

b) Tính các giá trị lượng giác của góc $795^o.$

a) Tính các giá trị lượng giác của góc $75^o.$

+) $\sin 75^o$ $=\sin(30^o+45^o)$ $=\sin 30^o\cos 45^o+\cos 30^o\sin 45^o$ $=\dfrac{1}{2}\cdot\dfrac{\sqrt{2}}{2}+\dfrac{\sqrt{3}}{2}\cdot\dfrac{\sqrt{2}}{2}$ $=\dfrac{\sqrt{2}+\sqrt{6}}{4}.$

+) $\cos 75^o$ $=\cos(30^o+45^o)$ $=\cos 30^o\cos 45^o-\sin 30^o\sin 45^o$ $=\dfrac{\sqrt{3}}{2}\cdot\dfrac{\sqrt{2}}{2}-\dfrac{1}{2}\cdot\dfrac{\sqrt{2}}{2}$ $=\dfrac{\sqrt{6}-\sqrt{2}}{4}.$

+) $\tan 75^o$ $=\dfrac{\sin 75^o}{\cos 75^o}$ $=\dfrac{\sqrt{6}+\sqrt{2}}{\sqrt{6}-\sqrt{2}}.$

+) $\cot 75^o$ $=\dfrac{\cos 75^o}{\sin 75^o}$ $=\dfrac{\sqrt{6}-\sqrt{2}}{\sqrt{6}+\sqrt{2}}.$

b) Tính các giá trị lượng giác của góc $795^o.$

Ta có: $795^o=75^o+2\cdot 360^o.$

Do đó:

+) $\sin 795^o$ $=\sin 75^o$ $=\dfrac{\sqrt{2}+\sqrt{6}}{4}.$

+) $\cos 795^o$ $=\cos 75^o$ $=\dfrac{\sqrt{6}-\sqrt{2}}{4}.$

+) $\tan 795^o$ $=\dfrac{\sin 795^o}{\cos 795^o}$ $=\dfrac{\sqrt{6}+\sqrt{2}}{\sqrt{6}-\sqrt{2}}.$

+) $\cot 795^o$ $=\dfrac{\cos 795^o}{\sin 795^o}$ $=\dfrac{\sqrt{6}-\sqrt{2}}{\sqrt{6}+\sqrt{2}}.$

BT 2:

a) Tính các giá trị lượng giác của góc $\dfrac{\pi}{12}.$

b) Tính các giá trị lượng giác của góc $\dfrac{73\pi}{12}.$

a) Tính các giá trị lượng giác của góc $\dfrac{\pi}{12}.$

+) $\sin\dfrac{\pi}{12}$ $=\sin(\dfrac{\pi}{3}-\dfrac{\pi}{4})$ $=\sin\dfrac{\pi}{3}\cos\dfrac{\pi}{4}-\sin\dfrac{\pi}{4}\cos\dfrac{\pi}{3}$ $=\dfrac{\sqrt{3}}{2}\cdot\dfrac{\sqrt{2}}{2}-\dfrac{\sqrt{2}}{2}\cdot\dfrac{1}{2}$ $=\dfrac{\sqrt{6}-\sqrt{2}}{4}.$

+) $\cos\dfrac{\pi}{12}$ $=\cos(\dfrac{\pi}{3}-\dfrac{\pi}{4})$ $=\cos\dfrac{\pi}{3}\cos\dfrac{\pi}{4}+\sin\dfrac{\pi}{4}\sin\dfrac{\pi}{3}$ $=\dfrac{1}{2}\cdot\dfrac{\sqrt{2}}{2}+\dfrac{\sqrt{2}}{2}\cdot\dfrac{\sqrt{3}}{2}$ $=\dfrac{\sqrt{2}+\sqrt{6}}{4}.$

+) $\tan\dfrac{\pi}{12}$ $=\dfrac{\sin\dfrac{\pi}{12}}{\cos\dfrac{\pi}{12}}$ $=\dfrac{\sqrt{6}-\sqrt{2}}{\sqrt{6}+\sqrt{2}}.$

+) $\cot\dfrac{\pi}{12}$ $=\dfrac{\cos\dfrac{\pi}{12}}{\sin\dfrac{\pi}{12}}$ $=\dfrac{\sqrt{6}+\sqrt{2}}{\sqrt{6}-\sqrt{2}}.$

b) Tính các giá trị lượng giác của góc $\dfrac{73\pi}{12}.$

Ta có: $\dfrac{73\pi}{12}$ $=\dfrac{\pi}{12}+6\pi$ $=\dfrac{\pi}{12}+3\cdot 2\pi.$

Do đó:

+) $\sin\dfrac{73\pi}{12}$ $=\sin\dfrac{\pi}{12}$ $=\dfrac{\sqrt{6}-\sqrt{2}}{4}.$

+) $\cos\dfrac{73\pi}{12}$ $=\cos\dfrac{\pi}{12}$ $=\dfrac{\sqrt{2}+\sqrt{6}}{4}.$

+) $\tan\dfrac{73\pi}{12}$ $=\dfrac{\sin\dfrac{73\pi}{12}}{\cos\dfrac{73\pi}{12}}$ $=\dfrac{\sqrt{6}-\sqrt{2}}{\sqrt{6}+\sqrt{2}}.$

+) $\cot\dfrac{73\pi}{12}$ $=\dfrac{\cos\dfrac{73\pi}{12}}{\sin\dfrac{73\pi}{12}}$ $=\dfrac{\sqrt{6}+\sqrt{2}}{\sqrt{6}-\sqrt{2}}.$

BT 3: Cho $\sin\alpha=\dfrac{3}{\sqrt{10}}$ với $\dfrac{\pi}{2} < \alpha < \pi.$ Tính $\cos\left(\alpha-\dfrac{\pi}{4}\right),$ $\sin\left(\dfrac{\pi}{6}+\alpha\right),$ $\tan\left(\dfrac{\pi}{3}-\alpha\right).$

Vì $\dfrac{\pi}{2} < \alpha < \pi$ nên $\cos\alpha < 0.$

Do đó: $\cos\alpha=-\sqrt{1-\sin^2\alpha}$ $=-\sqrt{1-\left(\dfrac{3}{\sqrt{10}}\right)^2}$ $=-\sqrt{\dfrac{1}{10}}$ $=\dfrac{-1}{\sqrt{10}}.$

Vậy:

+) $\cos\left(\alpha-\dfrac{\pi}{4}\right)$ $=\cos\alpha\cos\dfrac{\pi}{4}+\sin\alpha\sin\dfrac{\pi}{4}$ $=\dfrac{-1}{\sqrt{10}}\cdot\dfrac{\sqrt{2}}{2}+\dfrac{3}{\sqrt{10}}\cdot\dfrac{\sqrt{2}}{2}$ $=\dfrac{1}{\sqrt{5}}.$

+) $\sin\left(\dfrac{\pi}{6}+\alpha\right)$ $=\sin\dfrac{\pi}{6}\cos\alpha+\cos\dfrac{\pi}{6}\sin\alpha$ $=\dfrac{1}{2}\cdot\dfrac{-1}{\sqrt{10}}+\dfrac{\sqrt{3}}{2}\cdot\dfrac{3}{\sqrt{10}}$ $=\dfrac{3\sqrt{3}-1}{2\sqrt{10}}.$

Ta có: $\tan\alpha=\dfrac{\sin\alpha}{\cos\alpha}$ $=-3.$

Do đó:

+) $\tan\left(\dfrac{\pi}{3}-\alpha\right)$ $=\dfrac{\tan\dfrac{\pi}{3}-\tan\alpha}{1+\tan\dfrac{\pi}{3}\tan\alpha}$ $=\dfrac{\sqrt{3}-(-3)}{1+\sqrt{3}\cdot(-3)}$ $=\dfrac{3+\sqrt{3}}{1-3\sqrt{3}}.$

BT 4: Chứng minh rằng:

a) $\sin x+\cos x=\sqrt{2}\sin\left(x+\dfrac{\pi}{4}\right).$

b) $\sin x-\sqrt{3}\cos x=2\sin\left(x-\dfrac{\pi}{3}\right).$

c) $\sqrt{3}\sin x+\cos x=2\sin\left(x+\dfrac{\pi}{6}\right).$

a) Ta có:

VP = $\sqrt{2}\sin\left(x+\dfrac{\pi}{4}\right)$ $=\sqrt{2}\left(\sin x\cos\dfrac{\pi}{4}+\cos x\sin\dfrac{\pi}{4}\right)$ $=\sqrt{2}\left(\sin x\cdot\dfrac{\sqrt{2}}{2}+\cos x\cdot\dfrac{\sqrt{2}}{2}\right)$ $=\sqrt{2}\cdot\dfrac{\sqrt{2}}{2}(\sin x+\cos x)$ $=\sin x+\cos x$ = VT.

Suy ra đpcm.

b) Ta có:

VP = $2\sin\left(x-\dfrac{\pi}{3}\right)$ $=2\left(\sin x\cos\dfrac{\pi}{3}-\cos x\sin\dfrac{\pi}{3}\right)$ $=2\left(\sin x\cdot \dfrac{1}{2}-\cos x\cdot\dfrac{\sqrt{3}}{2}\right)$ $=2\cdot\dfrac{1}{2}\left(\sin x-\sqrt{3}\cos x\right)$ $=\sin x-\sqrt{3}\cos x$ =VT.

Suy ra đpcm.

c) Ta có:

VP = $2\sin\left(x+\dfrac{\pi}{6}\right)$ $=2\left(\sin x\cos\dfrac{\pi}{6}+\cos x\sin\dfrac{\pi}{6}\right)$ $=2\left(\sin x\cdot\dfrac{\sqrt{3}}{2}+\cos x\cdot\dfrac{1}{2}\right)$ $=2\cdot\dfrac{1}{2}\left(\sqrt{3}\sin x+\cos x\right)$ $=\sqrt{3}\sin x+\cos x$ = VT.

Suy ra đpcm.

BT 5: Tính các giá trị lượng giác của góc $2\alpha,$ biết $\sin\alpha=\dfrac{1}{\sqrt{3}}$ và $\dfrac{\pi}{2} < \alpha < \pi.$

Vì $\dfrac{\pi}{2} < \alpha < \pi$ nên $\cos\alpha < 0.$

Do đó: $\cos\alpha = -\sqrt{1-\sin^2 x}$ $=-\sqrt{1-\left(\dfrac{1}{\sqrt{3}}\right)^2}$ $=-\sqrt{\dfrac{2}{3}}$ $=\dfrac{-\sqrt{2}}{\sqrt{3}}.$

Từ đó tính được:

+) $\sin 2\alpha$ $=2\sin\alpha\cos\alpha$ $=2\cdot\dfrac{1}{\sqrt{3}}\cdot\dfrac{-\sqrt{2}}{\sqrt{3}}$ $=\dfrac{-2\sqrt{2}}{3}.$

+) $\cos 2\alpha$ $=\cos^2\alpha-\sin^2\alpha$ $=\dfrac{2}{3}-\dfrac{1}{3}$ $=\dfrac{1}{3}.$

+) $\tan 2\alpha$ $=\dfrac{\sin 2\alpha}{\cos 2\alpha}$ $=-2\sqrt{2}.$

+ $\cot 2\alpha$ $=\dfrac{1}{\tan 2\alpha}$ $=\dfrac{-1}{2\sqrt{2}}.$

BT 6: Tính:

a) $A=\dfrac{\sin\dfrac{\pi}{5}-\sin\dfrac{2\pi}{15}}{\cos\dfrac{\pi}{5}-\cos\dfrac{2\pi}{15}}.$

b) $B=\sin\dfrac{2\pi}{9}-\sin\dfrac{5\pi}{9}+\sin\dfrac{8\pi}{9}.$

c) $C=\cos\dfrac{2\pi}{9}+\cos\dfrac{4\pi}{9}+\cos\dfrac{10\pi}{9}.$

a) $A=\dfrac{\sin\dfrac{\pi}{5}-\sin\dfrac{2\pi}{15}}{\cos\dfrac{\pi}{5}-\cos\dfrac{2\pi}{15}}.$

Ta có:

+) $\sin\dfrac{\pi}{5}-\sin\dfrac{2\pi}{15}$ $=2\cos\dfrac{\dfrac{\pi}{5}+\dfrac{2\pi}{15}}{2}\sin\dfrac{\dfrac{\pi}{5}-\dfrac{2\pi}{15}}{2}$ $=2\cos\dfrac{\pi}{6}\sin\dfrac{\pi}{30}.$

+) $\cos\dfrac{\pi}{5}-\cos\dfrac{2\pi}{15}$ $=-2\sin\dfrac{\dfrac{\pi}{5}+\dfrac{2\pi}{15}}{2}\sin\dfrac{\dfrac{\pi}{5}-\dfrac{2\pi}{15}}{2}$ $=-2\sin\dfrac{\pi}{6}\sin\dfrac{\pi}{30}.$

Do đó: $A=\dfrac{\sin\dfrac{\pi}{5}-\sin\dfrac{2\pi}{15}}{\cos\dfrac{\pi}{5}-\cos\dfrac{2\pi}{15}}$ $=\dfrac{2\cos\dfrac{\pi}{6}\sin\dfrac{\pi}{30}}{-2\sin\dfrac{\pi}{6}\sin\dfrac{\pi}{30}}$ $=-\cot\dfrac{\pi}{6}$ $=-\sqrt{3}.$

b) $B=\sin\dfrac{2\pi}{9}-\sin\dfrac{5\pi}{9}+\sin\dfrac{8\pi}{9}$

$=\sin\dfrac{2\pi}{9}+\sin\dfrac{8\pi}{9}-\sin\dfrac{5\pi}{9}$

$=2\sin\dfrac{\dfrac{2\pi}{9}+\dfrac{8\pi}{9}}{2}\cos\dfrac{\dfrac{2\pi}{9}-\dfrac{8\pi}{9}}{2}-\sin\dfrac{5\pi}{9}$

$=2\sin\dfrac{5\pi}{9}\cos\dfrac{-\pi}{3}-\sin\dfrac{5\pi}{9}$

$=2\sin\dfrac{5\pi}{9}\cdot\dfrac{1}{2}-\sin\dfrac{5\pi}{9}$

$=\sin\dfrac{5\pi}{9}-\sin\dfrac{5\pi}{9}$

$=0.$

c) $C=\cos\dfrac{2\pi}{9}+\cos\dfrac{4\pi}{9}+\cos\dfrac{10\pi}{9}$

$=\cos\dfrac{2\pi}{9}+\cos\dfrac{10\pi}{9}+\cos\dfrac{4\pi}{9}$

$=2\cos\dfrac{\dfrac{2\pi}{9}+\dfrac{10\pi}{9}}{2}\cos\dfrac{\dfrac{2\pi}{9}-\dfrac{10\pi}{9}}{2}+\cos\dfrac{4\pi}{9}$

$=2\cos\dfrac{2\pi}{3}\cos\dfrac{-4\pi}{9}+\cos\dfrac{4\pi}{9}$

$=2\cdot\dfrac{-1}{2}\cdot\cos\dfrac{4\pi}{9}+\cos\dfrac{4\pi}{9}$

$=-\cos\dfrac{4\pi}{9}+\cos\dfrac{4\pi}{9}$

$=0.$

Mức độ TRUNG BÌNH:

BT 7: Tính:

a) $A=\sin 22^o30’\cdot\cos 202^o30′.$

b) $B=4\sin^4\dfrac{\pi}{16}+2\cos\dfrac{\pi}{8}.$

a) $A=\sin 22^o30’\cdot\cos 202^o30’$

Ta có: $\cos 202^o30’$ $=\cos(22^o30’+180^o)$ $=-\cos 22^o30′.$

Do đó: $A=-\sin 22^o30’\cos 22^o30’$ $=-\dfrac{1}{2}\sin 2\cdot(22^o30′)$ $=-\dfrac{1}{2}\sin 45^o$ $=-\dfrac{1}{2}\cdot\dfrac{\sqrt{2}}{2}$ $=-\dfrac{\sqrt{2}}{4}.$

b) $B=4\sin^4\dfrac{\pi}{16}+2\cos\dfrac{\pi}{8}.$

Ta có: $4\sin^4\dfrac{\pi}{16}$ $=4\left(\sin^2\dfrac{\pi}{16}\right)^2$ $=4\left(\dfrac{1-\cos 2\cdot\dfrac{\pi}{16}}{2}\right)^2$ $=4\cdot\dfrac{\left(1-\cos\dfrac{\pi}{8}\right)^2}{4}$ $=\left(1-\cos\dfrac{\pi}{8}\right)^2$ $=1+\cos^2\dfrac{\pi}{8}-2\cos\dfrac{\pi}{8}.$

Do đó:

$B=4\sin^4\dfrac{\pi}{16}+2\cos\dfrac{\pi}{8}$

$=1+\cos^2\dfrac{\pi}{8}-2\cos\dfrac{\pi}{8}+2\cos\dfrac{\pi}{8}$

$=1+\cos^2\dfrac{\pi}{8}$

$=1+\dfrac{1+\cos 2\cdot\dfrac{\pi}{8}}{2}$

$=1+\dfrac{1+\cos\dfrac{\pi}{4}}{2}$

$=1+\dfrac{1+\dfrac{\sqrt{2}}{2}}{2}$

$=1+\dfrac{2+\sqrt{2}}{4}$

$=\dfrac{6+\sqrt{2}}{4}.$

BT 8: Tính:

a) $A=\dfrac{1}{\cos 290^o}+\dfrac{1}{\sqrt{3}\sin 250^o}.$

b) $B=(1+\tan 20^o)(1+\tan 25^o).$

c) $C=\tan 9^o-\tan 27^o-\tan 63^o+\tan 81^o.$

d) $D=\sin^2\dfrac{\pi}{9}+\sin^2\dfrac{2\pi}{9}+\sin\dfrac{\pi}{9}\sin\dfrac{2\pi}{9}.$

e) $E=\sin\dfrac{\pi}{32}\cos\dfrac{\pi}{32}\cos\dfrac{\pi}{16}\cos\dfrac{\pi}{8}.$

a) $A=\dfrac{1}{\cos 290^o}+\dfrac{1}{\sqrt{3}\sin 250^o}.$

Ta có:

+) $\cos 290^o$ $=\cos(360^o-70^o)$ $=\cos(-70^o)$ $=\cos 70^o.$

+) $\sin 250^o$ $=\sin(70^o+180^o)$ $=-\sin 70^o.$

Do đó:

$A=\dfrac{1}{\cos 290^o}+\dfrac{1}{\sqrt{3}\sin 250^o}$

$=\dfrac{1}{\cos 70^o}+\dfrac{1}{\sqrt{3}(-\sin 70^o)}$

$=\dfrac{1}{\cos 70^o}-\dfrac{1}{\sqrt{3}\sin 70^o}$

$=\dfrac{\sqrt{3}\sin 70^o-\cos 70^o}{\sqrt{3}\sin 70^o\cos 70^o}$

$=4\cdot \dfrac{\dfrac{\sqrt{3}}{2}\sin 70^o-\dfrac{1}{2}\cos 70^o}{\sqrt{3}\cdot 2\sin 70^o\cos 70^o}$

$=4\cdot \dfrac{\cos 30^o\sin 70^o-\sin 30^o\cos 70^o}{\sqrt{3}\cdot \sin 140^o}$

$=4\cdot \dfrac{\sin 40^o}{\sqrt{3}\cdot \sin 140^o}$

$=4\cdot\dfrac{\sin 40^o}{\sqrt{3}\cdot\sin 40^o}$

$=\dfrac{4}{\sqrt{3}}.$

b) $B=(1+\tan 20^o)(1+\tan 25^o)$

$=\left(1+\dfrac{\sin 20^o}{\cos 20^o}\right)\left(1+\dfrac{\sin 25^o}{\cos 25^o}\right)$

$=\dfrac{(\cos 20^o+\sin 20^o)\cdot (\cos 25^o+\sin 25^o)}{\cos 20^o\cos 25^o}$

$=\dfrac{\sqrt{2}\cos(20^o-45^o)\cdot \sqrt{2}\cos(25^o-45^o)}{\cos 20^o\cos 25^o}$

$=\dfrac{2\cos(-25^o)\cos(-20^o)}{\cos 20^o\cos 25^o}$

$=\dfrac{2\cos 25^o\cos 20^o}{\cos 20^o\cos 25^o}$

$=2.$

c) $C=\tan 9^o-\tan 27^o-\tan 63^o+\tan 81^o.$

$=(\tan 9^o+\tan 81^o)-(\tan 27^o+\tan 63^o)$

$=\dfrac{\sin 9^o\cos 81^o+\cos 9^o\sin 81^o}{\cos 9^o\cos 81^o}-\dfrac{\sin 27^o\cos 63^o+\cos 27^o\sin 63^o}{\cos 27^o\cos 63^o}$

$=\dfrac{\sin 90^o}{\cos 9^o\sin 9^o}-\dfrac{\sin 90^o}{\cos 27^o\sin 27^o}$

$=\dfrac{2}{\sin 18^o}-\dfrac{2}{\sin 54^o}$

$=\dfrac{2(\sin 54^o-\sin 18^o)}{\sin 18^o\sin 54^o}$

$=\dfrac{4\cos 36^o\sin 18^o}{\sin 18^o\sin 54^o}$

$=\dfrac{4\sin 54^o\sin 18^o}{\sin 18^o\sin 54^o}$

$=4.$

d) $D=\sin^2\dfrac{\pi}{9}+\sin^2\dfrac{2\pi}{9}+\sin\dfrac{\pi}{9}\sin\dfrac{2\pi}{9}$

Đặt $x=\sin\dfrac{\pi}{9}$ và $y=\sin\dfrac{2\pi}{9}$ thì $A=x^2+y^2+xy=(x+y)^2-xy.$

Trong đó:

+) $x+y$ $=\sin\dfrac{\pi}{9}+\sin\dfrac{2\pi}{9}$ $=2\sin\dfrac{\pi}{6}\cos\dfrac{\pi}{18}$ $=\cos\dfrac{\pi}{18}.$

+) $xy$ $=\sin\dfrac{\pi}{9}\cdot\sin\dfrac{2\pi}{9}$ $=-\dfrac{1}{2}\left(\cos\dfrac{\pi}{3}-\cos\dfrac{\pi}{9}\right)$ $=-\dfrac{1}{2}\left(\dfrac{1}{2}-\cos\dfrac{\pi}{9}\right).$

Vậy:

$A=\cos^2\dfrac{\pi}{18}+\dfrac{1}{2}\left(\dfrac{1}{2}-\cos\dfrac{\pi}{9}\right)$

$=\dfrac{1+\cos\dfrac{\pi}{9}}{2}+\dfrac{1}{2}\left(\dfrac{1}{2}-\cos\dfrac{\pi}{9}\right)$

$\dfrac{3}{4}.$

e) $E=\sin\dfrac{\pi}{32}\cos\dfrac{\pi}{32}\cos\dfrac{\pi}{16}\cos\dfrac{\pi}{8}.$

Đặt $\dfrac{\pi}{32}=x$ thì $\dfrac{\pi}{16}=2x$ và $\dfrac{\pi}{8}=4x.$

Ta có:

$E=\sin x\cos x\cos 2x\cos 4x$

$=\dfrac{1}{2}\sin 2x\cos 2x\cos 4x$

$=\dfrac{1}{2}\cdot \dfrac{1}{2}\sin 4x\cos 4x$

$=\dfrac{1}{2}\cdot\dfrac{1}{2}\cdot\dfrac{1}{2}\sin 8x$

$=\dfrac{1}{8}\sin 8x$

$=\dfrac{1}{8}\sin\left(8\cdot\dfrac{\pi}{32}\right)$

$=\dfrac{1}{8}\sin\dfrac{\pi}{4}$

$=\dfrac{\sqrt{2}}{16}.$

BT 9: Cho góc $\alpha$ thỏa mãn $\sin\alpha=\dfrac{3}{5}.$ Tính $P=\sin\left(\alpha+\dfrac{\pi}{6}\right)\sin\left(\alpha-\dfrac{\pi}{6}\right).$

Ta có:

+) $\sin\left(\alpha+\dfrac{\pi}{6}\right)$ $=\sin\alpha\cos\dfrac{\pi}{6}+\cos\alpha\sin\dfrac{\pi}{6}$ $=\sin\alpha\cdot\dfrac{\sqrt{3}}{2}+\cos\alpha\cdot\dfrac{1}{2}$

+) $\sin\left(\alpha-\dfrac{\pi}{6}\right)$ $=\sin\alpha\cos\dfrac{\pi}{6}-\cos\alpha\sin\dfrac{\pi}{6}$ $=\sin\alpha\cdot\dfrac{\sqrt{3}}{2}-\cos\alpha\cdot\dfrac{1}{2}$

Do đó:

$P=\left(\sin\alpha\cdot\dfrac{\sqrt{3}}{2}+\cos\alpha\cdot\dfrac{1}{2}\right)\left(\sin\alpha\cdot\dfrac{\sqrt{3}}{2}-\cos\alpha\cdot\dfrac{1}{2}\right)$

$=\dfrac{3}{4}\sin^2\alpha-\dfrac{1}{4}\cos^2\alpha$

$=\dfrac{3}{4}\sin^2\alpha-\dfrac{1}{4}(1-\sin^2\alpha)$

$=\sin^2\alpha-\dfrac{1}{4}$

$=\dfrac{9}{25}-\dfrac{1}{4}$

$=\dfrac{11}{100}.$

BT 10: Cho góc $\alpha$ thỏa mãn $\sin\alpha=\dfrac{4}{5}.$ Tính $P=\cos 4\alpha.$

$P=\cos 4\alpha$ $=2\cos^2 2\alpha-1$ $=2\left(1-2\sin^2\alpha\right)^2-1$ $=2\left(1-4\sin^2\alpha+4\sin^4\alpha\right)-1$ $=1-8\sin^2\alpha+8\sin^4\alpha$ $=1-8\sin^2\alpha(1+\sin^2\alpha)$ $=1-8\cdot\dfrac{16}{25}\left(1+\dfrac{16}{25}\right)$ $=1-8\cdot\dfrac{16}{25}\cdot\dfrac{41}{25}$ $=1-\dfrac{5248}{625}$ $=\dfrac{-4623}{625}.$

BT 11: Cho góc $\alpha$ thỏa mãn $\tan\alpha=-2.$ Tính $P=\dfrac{\sin 2\alpha}{\cos 4\alpha+1}.$

$P=\dfrac{\sin 2\alpha}{\cos 4\alpha+1}$

$=\dfrac{\sin 2\alpha}{1-2\sin^2 2\alpha+1}$

$=\dfrac{\sin 2\alpha}{2-2\sin^2 2\alpha}$

Mà $\sin 2\alpha$ $=\dfrac{2\tan\alpha}{1+\tan^2\alpha}$ $=\dfrac{2\cdot(-2)}{1+(-2)^2}$ $=\dfrac{-4}{5}.$

Do đó:

$P=\dfrac{\dfrac{-4}{5}}{2-2\cdot\dfrac{16}{25}}$

$=\dfrac{\dfrac{-4}{5}}{\dfrac{18}{25}}=\dfrac{-10}{9}.$

BT 12: Chứng minh rằng với mọi góc $\alpha$ làm cho biểu thức xác định thì:

a) $1-\sin 2\alpha=(\sin\alpha-\cos\alpha)^2.$

b) $1+\sin 2\alpha=(\sin\alpha+\cos\alpha)^2.$

c) $\dfrac{1-\sin 2\alpha}{1+\sin 2\alpha}=\cot^2\left(\dfrac{\pi}{4}+\alpha\right).$

a) $1-\sin 2\alpha=(\sin\alpha-\cos\alpha)^2.$

Đặt $\sin\alpha=x$ và $\cos\alpha=y$ thì $x^2+y^2=\sin^2\alpha+\cos^2\alpha=1.$

Ta có:

+) $VT=1-\sin 2\alpha$ $=1-2\sin\alpha\cos\alpha$ $=1-2xy.$

+) $VP=(\sin\alpha-\cos\alpha)^2$ $=(x-y)^2$ $=x^2+y^2-2xy$ $=1-2xy.$

Vậy $VT=VP.$ Suy ra đpcm.

b) $1+\sin 2\alpha=(\sin\alpha+\cos\alpha)^2.$

Tương tự câu a).

c) $\dfrac{1-\sin 2\alpha}{1+\sin 2\alpha}=\cot^2\left(\dfrac{\pi}{4}+\alpha\right).$

Áp dụng câu a) và câu b) ta được: $VT=\dfrac{1-\sin 2\alpha}{1+\sin 2\alpha}$ $=\left(\dfrac{\sin\alpha-\cos\alpha}{\sin\alpha+\cos\alpha}\right)^2$

Mặt khác: $VP=\cot^2\left(\dfrac{\pi}{4}+\alpha\right)$ $=\left(\dfrac{\cos\left(\dfrac{\pi}{4}+\alpha\right)}{\sin\left(\dfrac{\pi}{4}+\alpha\right)}\right)^2$ $=\left(\dfrac{\cos\dfrac{\pi}{4}\cos\alpha-\sin\dfrac{\pi}{4}\sin\alpha}{\sin\dfrac{\pi}{4}\cos\alpha+\cos\dfrac{\pi}{4}\sin\alpha}\right)^2$ $=\left(\dfrac{\dfrac{\sqrt{2}}{2}\cdot\cos\alpha-\dfrac{\sqrt{2}}{2}\cdot\sin\alpha}{\dfrac{\sqrt{2}}{2}\cdot\cos\alpha+\dfrac{\sqrt{2}}{2}\cdot\sin\alpha}\right)^2$ $=\left(\dfrac{\cos\alpha-\sin\alpha}{\cos\alpha+\sin\alpha}\right)^2.$

Vậy $VT=VP.$ Suy ra đpcm.

BT 13: Chứng minh các công thức nhân ba:

a) $\cos 3a=4\cos^3 a-3\cos a.$

b) $\sin 3a=3\sin a-4\sin^3 a.$

a) $\cos 3a=\cos(a+2a)$ $=\cos a\cos 2a-\sin a\sin2a$ $=\cos a(2\cos^2a-1)-\sin a\cdot 2\sin a\cos a$ $=2\cos^3a-\cos a-2\sin^2a\cos a$ $=2\cos^3a-\cos a-2(1-\cos^2a)\cos a$ $=2\cos^3a-\cos a-2\cos a+2\cos^3a$ $=4\cos^3a-3\cos a.$

b) Tương tự câu a).

BT 14: Đơn giản các biểu thức sau:

a) $A=\dfrac{\cos a+2\cos 2a+\cos 3a}{\sin a+2\sin 2a+\sin 3a}.$

b) $B=\dfrac{\cos\left(a+\dfrac{\pi}{3}\right)+\cos\left(a-\dfrac{\pi}{3}\right)}{\cot a-\cot\dfrac{a}{2}}.$

a) $A=\dfrac{\cos a+2\cos 2a+\cos 3a}{\sin a+2\sin 2a+\sin 3a}.$

Ta có:

+) $\cos a+2\cos 2a+\cos 3a$ $=\cos a+\cos 3a+2\cos 2a$ $=2\cos 2a\cos a+2\cos 2a$ $=2\cos 2a(\cos a+1).$

+) $\sin a+\sin 2a+2\sin 3a$ $=\sin a+\sin 3a+2\sin 2a$ $=2\sin 2a\cos a+2\sin 2a$ $=2\sin 2a(\cos a+1).$

Vậy $A=\dfrac{2\cos 2a(\cos a+1)}{2\sin 2a(\cos a+1)}$ $=\dfrac{\cos 2a}{\sin 2a}$ $=\cot 2a.$

b) $B=\dfrac{\cos\left(a+\dfrac{\pi}{3}\right)+\cos\left(a-\dfrac{\pi}{3}\right)}{\cot a-\cot\dfrac{a}{2}}.$

Ta có:

+) $\cos\left(a+\dfrac{\pi}{3}\right)+\cos\left(a-\dfrac{\pi}{3}\right)$ $=2\cos a\cos\dfrac{\pi}{3}$ $=2\cos a\cdot\dfrac{1}{2}$ $=\cos a.$

+) $\cot a-\cot\dfrac{a}{2}$ $=\dfrac{\cos a}{\sin a}-\dfrac{\cos\dfrac{a}{2}}{\sin\dfrac{a}{2}}$ $=\dfrac{\sin\dfrac{a}{2}\cos a-\cos\dfrac{a}{2}\sin a}{\sin a\sin\dfrac{a}{2}}$ $=\dfrac{\sin\dfrac{-a}{2}}{\sin a\sin\dfrac{a}{2}}$ $=\dfrac{-\sin\dfrac{a}{2}}{\sin a\sin\dfrac{a}{2}}$ $=\dfrac{-1}{\sin a}.$

Vậy $B=\dfrac{\cos a}{\dfrac{-1}{\sin a}}$ $=-\sin a\cos a$ $=-\dfrac{\sin 2a}{2}.$

BT 15: Cho tam giác $ABC.$

a) Chứng minh rằng $\cos C=-\cos(A+B).$

b) Biết $\cos A=\dfrac{4}{5},$ $\cos B=\dfrac{5}{13}.$ Tính $\cos C.$

a) Vì $(A+B)+C=\pi$ (tổng ba góc của một tam giác) nên $\cos C=\cos [\pi-(A+B)]=-\cos(A+B).$

b) Vì $0 < A, B < \pi$ nên $\sin A, \sin B > 0.$ Do đó: $\sin A=\sqrt{1-\cos^2A}=\dfrac{3}{5}$ và $\sin B=\sqrt{1-\cos^2 B}=\dfrac{12}{13}.$

Ta có: $\cos(A+B)=\cos A\cos B-\sin A\sin B$ $=\dfrac{4}{5}\cdot\dfrac{5}{13}-\dfrac{3}{5}\cdot\dfrac{12}{13}$ $=\dfrac{-16}{65}.$

Suy ra: $\cos C=-\cos(A+B)=\dfrac{16}{65}.$

Mức độ KHÓ:

BT 16: Tính:

a) $\sin 18^o.$

b) $\cot\dfrac{5\pi}{8}.$

a) Ta có: $\sin^2 18^o=\dfrac{1-\cos 36^o}{2}.$

Do đó $2\sin^2 18^o=1-\cos 36^o$ $=1-\sin 54^o$ $=1-\sin(3\cdot 18^o)$ $=1-(3\sin 18^o-4\sin^3 18^o)$ $=1-3\sin 18^o+4\sin^3 18^o.$

Suy ra $4\sin^3 18^o-2\sin^2 18^o-3\sin 18^o+1=0$ $\Leftrightarrow (\sin 18^o-1)(4\sin^2 18^o+2\sin 18^o-1)=0$ $\Leftrightarrow \left[\begin{matrix} \sin 18^o=1 \\ \sin 18^o=\dfrac{\sqrt{5}-1}{2} \\ \sin 18^o=\dfrac{\sqrt{5}+1}{2} \end{matrix}\right.$

Vì $0 < \sin 18^o < 1$ nên ta chọn $\sin 18^o=\dfrac{\sqrt{5}-1}{2}.$

b) Ta có: $\cot\dfrac{5\pi}{8}=\cot\left(\dfrac{\pi}{8}+\dfrac{\pi}{2}\right)=-\tan\dfrac{\pi}{8}.$

Mặt khác: $\tan\left(2\cdot\dfrac{\pi}{8}\right)=\dfrac{2\tan\dfrac{\pi}{8}}{1-\tan^2\dfrac{\pi}{8}}$ $\Rightarrow 1=\dfrac{2\tan\dfrac{\pi}{8}}{1-\tan^2\dfrac{\pi}{8}}$ $\Rightarrow \tan^2\dfrac{\pi}{8}+2\tan\dfrac{\pi}{8}-1=0$ $\Rightarrow \tan\dfrac{\pi}{8}=-1-\sqrt{2}\;hoặc\; \tan\dfrac{\pi}{8}=-1+\sqrt{2}.$

Do $\tan\dfrac{\pi}{8} > 0$ nên ta chọn $\tan\dfrac{\pi}{8}=-1+\sqrt{2}.$

Suy ra $\cot\dfrac{5\pi}{8}=-\tan\dfrac{\pi}{8}=1-\sqrt{2}.$

BT 17: Tính giá trị các biểu thức lượng giác sau:

a) $A=\sin 10^o\sin 30^o\sin 50^o\sin 70^o.$

b) $B=\cos\dfrac{\pi}{5}+\cos\dfrac{3\pi}{5}.$

c) $C=\cos^2\dfrac{\pi}{7}+\cos^2\dfrac{2\pi}{7}+\cos^2\dfrac{3\pi}{7}.$

a) $A=\sin 10^o\sin 30^o\sin 50^o\sin 70^o$ $=\cos 80^o\dfrac{1}{2}\cos 40^o\cos 20^o$ $=\dfrac{1}{2}\cos 20^o\cos 40^o\cos 80^o.$

Suy ra: $16\sin 20^o\cdot A=8\sin 20^o\cos 20^o\cos 40^o\cos 80^o$ $=4\sin 40^o\cos 40^o\cos 80^o$ $=2\sin 80^o\cos 80^o$ $=\sin 160^o$ $=\sin 20^o.$

Do đó, vì $\sin 20^o\neq 0$ nên $A=\dfrac{\sin 20^o}{16\sin 20^o}=\dfrac{1}{16}.$

b) $B=\cos\dfrac{\pi}{5}+\cos\dfrac{3\pi}{5}$ $=2\cos\dfrac{\pi}{5}\cos\dfrac{2\pi}{5}.$

Suy ra: $2\sin\dfrac{\pi}{5}\cdot B=4\sin\dfrac{\pi}{5}\cos\dfrac{\pi}{5}\cos\dfrac{2\pi}{5}$ $=2\sin\dfrac{2\pi}{5}\cos\dfrac{2\pi}{5}$ $=\sin\dfrac{4\pi}{5}$ $=\sin\dfrac{\pi}{5}.$

Do đó, vì $\sin\dfrac{\pi}{5}\neq 0$ nên $B=\dfrac{\sin\dfrac{\pi}{5}}{2\sin\dfrac{\pi}{5}}=\dfrac{1}{2}.$

c) $C=\cos^2\dfrac{\pi}{7}+\cos^2\dfrac{2\pi}{7}+\cos^2\dfrac{3\pi}{7}$ $=\dfrac{1+\cos\dfrac{2\pi}{7}}{2}+\dfrac{1+\cos\dfrac{4\pi}{7}}{2}+\dfrac{1+\cos\dfrac{6\pi}{7}}{2}$ $=\dfrac{1}{2}\left(3+\cos\dfrac{2\pi}{7}+\cos\dfrac{4\pi}{7}+\cos\dfrac{6\pi}{7}\right).$

Ta tính riêng $T=\cos\dfrac{2\pi}{7}+\cos\dfrac{4\pi}{7}+\cos\dfrac{6\pi}{7}.$

Ta có: $2\sin\dfrac{\pi}{7}\cdot T=2\sin\dfrac{\pi}{7}\cos\dfrac{2\pi}{7}+2\sin\dfrac{\pi}{7}\cos\dfrac{4\pi}{7}+2\sin\dfrac{\pi}{7}\cos\dfrac{6\pi}{7}$ $=\left(\sin\dfrac{3\pi}{7}-\sin\dfrac{\pi}{7}\right)+\left(\sin\dfrac{5\pi}{7}-\sin\dfrac{3\pi}{7}\right)+\left(\sin\pi-\sin\dfrac{5\pi}{7}\right)$ $=-\sin\dfrac{\pi}{7}.$

Do đó, vì $\sin\dfrac{\pi}{7}\neq 0$ nên $T=\dfrac{-\sin\dfrac{\pi}{7}}{2\sin\dfrac{\pi}{7}}=\dfrac{-1}{2}.$

Vậy $C=\dfrac{1}{2}\left(3+\dfrac{-1}{2}\right)=\dfrac{5}{4}.$

BT 18: Tìm giá trị lớn nhất, giá trị nhỏ nhất của mỗi biểu thức sau:

a) $A=\sin x+\cos x.$

b) $B=\sin^4 x+\cos^4 x.$

a) $A=\sin x+\cos x$ $=\sqrt{2}\sin\left(x+\dfrac{\pi}{4}\right).$

Ta có: $-1\leq \sin\left(x+\dfrac{\pi}{4}\right)\leq 1$

Suy ra $-\sqrt{2} \leq \sqrt{2}\sin\left(x+\dfrac{\pi}{4}\right) \leq \sqrt{2},$ hay $-\sqrt{2}\leq A\leq \sqrt{2}.$

Khi $x=\dfrac{3\pi}{4}$ thì $A=-\sqrt{2}.$ Khi $x=\dfrac{\pi}{4}$ thì $A=-\sqrt{2}.$

Vậy $max\; A=\sqrt{2}$ và $min\; A=-\sqrt{2}.$

b) $B=\sin^4 x+\cos^4 x$ $=\left(\sin^2x+\cos^2x\right)^2-2\sin^2x\cos^2x$ $=1-\dfrac{1}{2}\left(2\sin x\cos x\right)^2$ $=1-\dfrac{1}{2}\sin^2 2x$ $=1-\dfrac{1}{2}\cdot \dfrac{1-\cos 4x}{2}$ $=\dfrac{3}{4}+\dfrac{1}{4}\cos 4x.$

Vì $-1\leq \cos 4x\leq 1$ nên $\dfrac{1}{2}\leq \dfrac{3}{4}+\dfrac{1}{4}\cos 4x\leq 1,$ hay $\dfrac{1}{2}\leq B\leq 1.$

Khi $x=\dfrac{\pi}{4}$ thì $B=\dfrac{1}{2}.$ Khi $x=0$ thì $B=1.$

Vậy $max\;B=1$ và $min\;B=\dfrac{1}{2}.$

BT 19: Cho tam giác $ABC$ có $\dfrac{\sin B}{\sin C}=2\cos A.$ Chứng minh $ABC$ là tam giác cân.

$\dfrac{\sin B}{\sin C}=2\cos A$ $\Leftrightarrow \sin B=2\sin C\cos A$ $\Leftrightarrow \sin B=\sin(C+A)+\sin(C-A)\;\;\;(1)$

Mặt khác: $A+B+C=\pi$ nên $\sin B=\sin(C+A)\;\;\;(2)$

Từ $(1)$ và $(2)$ suy ra $\sin(C-A)=0.$

Do đó, $C=A,$ hay tam giác $ABC$ cân tại $B.$

Chia sẻ nếu thấy hay:
0 0 đánh giá
Đánh giá bài viết
Theo dõi
Thông báo của
guest

Website này sử dụng Akismet để hạn chế spam. Tìm hiểu bình luận của bạn được duyệt như thế nào.

0 Góp ý
Phản hồi nội tuyến
Xem tất cả bình luận
0
Rất thích suy nghĩ của bạn, hãy bình luận.x